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Periodic distortions in lyotropic nematic calamitic liquid crystals
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A theoretical tool to determine the dependence of the wavelength of periodic structures on the applied
magnetic field in lyotropic liquid crystals in the nematic calamitic phase is proposed. It is assumed that the
periodic structure experimentally found can be represented by a sequence of walls. Our calculations indicate
that in order to describe the measured behavior of the system above the Fredericks threshold the interaction
between these walls must be taken into account. The strength of these interactions and the ratio between the
bend and twist elastic constants are also determii#tD63-651%96)04509-9

PACS numbeg(s): 61.30.Gd, 61.30.Jf, 64.70.Md

[. INTRODUCTION length A of the periodic structure on the applied magnetic
field. Once a magnetic field is applied perpendicularly to the
The distortion of the texture of nematic liquid crystals direction of the director of the NLC sample, one observes the
(NLC) under the action of a magnetic or electric field is aarising of walls parallel to the magnetic field as soon as the
well known phenomena. It can be observed that under thEredericks threshold is reachgi#]. The nature and physical
action of the magnetic field, two symmetrical distorted tex-Properties of the walls we are dealing with were studied by
tures can be created, separated by a {Wgll These walls in  Brochard in Ref[3], where the dependence on the magnetic
thermotropic liquid crystals have been studied many year§eld of the length of just one wall was measured. Here we
ago both from the theoretical and experimental point of viewuse the fact that usually these walls appear as a periodic
[2—7]. More recently, the situation in which a magnetic field array in the nematic structure, and study the length of this
is applied to a previously oriented sample of lyotropic nem-periodicity when it appears along theaxis. The experimen-
atic liquid crystals has been analyzgg]9]. These NLC are tal data we are utilizing were obtained in regions of a mag-
formed by mixtures of amphiphilic compounds and water, athetic field nearly equal and greater than the Fredericks
proper temperature and concentrations conditigi®. In  threshold[12].
general, the periodic distortions of the textures can be ob- This paper is organized as follows. Section Il is dedicated
served in a polarizing microscope, with the polarizing direc-to the presentation of the basic equations of the theoretical
tion parallel to the long axis of the micelle, the basic con-approach. We also discuss the experimental procedure. In
stituent of lyotropics. Sec. lll we present the main results of our calculation. In
In recent papers the wavelength of the periodic distortionSec. [V some concluding remarks are drawn.
(\) was utilized to determine the bend elastic constant
(K3) and the anisotropy of diamagnetic susceptibijty of Il. FUNDAMENTALS
two different lyotropic systemil1]. In the frame of the elas-
tic theory a theoretical approach has been recently proposed The lyotropic sample consists of potassium laurate),
in order to estimate the anchoring strength, in the Rapinidecanol(DeOH) and water, with the following concentra-
Papoular sense, for the situation of weak anchorir®j. The  tions in weight percent: 29.4, 6.6, and 64, respectively. The
behavior of the distortion angle as a function of the magneti®hase sequence, determined by optical and conoscopic
field has also been investigated, in the one constant approx@bservations is as follows: isotropid5 °C)—calamitic ne-
mation[13]. The periodic structures arising in these systemspnatic (50 °CO—isotropic. Calamitic nematicN;) samples
under the action of magnetic fields, correspond to metastablere encapsuled at room temperature, in flat glass mi-
states. In principle, the usual elastic approach, based on tigoslides from Vitro Dynamics with dimensiors=20 mm
one constant approximation, cannot provide a completelyparallel to thex axis), b=2.5 mm (parallel to they axis),
satisfactory description of the equilibrium state of this sys-and thicknessl=0.2 mm(parallel to thez axis). The method
tem. This implies that a more complicated nonlinear analysi®©f generating the periodic distortion of the direcf8it con-
is required in order to fully describe its behavior. However,sists in orienting eN. sample in a planar geometry, with a
as can be experimentally observed, the relaxation time fohigh magnetic field10 kG along thex axig). After a well-
these periodic structures is very large. Only after a few hoursriented sample is achieved, the field is switched off and a
the instabilities collapse into closed elliptical lodgd. This  controlled magnetic field is applied along tlyeaxis. The
fact can be responsible for the good agreement obtained beessulting competition between the magnetic susceptibility
tween a simplified elastic approach and several experiment@ivhich tends to align the director along the fieland the
results. elastic energieéwvhich tend to retain a uniform orientation of
In this work we investigate the dependence of the wavethe director consistent with the orientation at the surface of
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servations, we are dealing with period structures along the
X axis, without structures along tlyeandz axes. In this way

we assume, for future use in a variational approach, an ex-
plicit form for the functioné(x,y,z), that represents the spa-
tial configuration of the directon. For simplicity strong an-
choring boundary conditions are assumed at the edges of the
sample, that is,

0(0y,z)=0(a,y,z)= 6(x,0,2) = 8(x,b,z) = 6(x,y,0)
=6(x,y,c)=0. 3)

Moreover, since the periodic structures are observed along
the x direction, we suppose trivial configurations satisfying
these boundary conditions aloggandz directions. Thus

H ( magnetic field )

(my\  (mz
0(x,y,2)= n(x)sm(?) sm( F) , 4

A for 0=x=<a,0<y<b,0=<z=<d, where n(x) is the configu-

ration of the nematic periodic structure along thexis. For
P instance, observe that sinfb), 0<y<b, and singz/c),
. ) o . ~ 0=z=d have half wavelength which corresponds to the
FIG. 1. Lyotropic nematic phase in microslides 200 mm thick most simple structure along these directions. The periodicity
between crossed polarizers. Magnetic fi@dd kG along they axis of 7(x) implies thaty(x+\) = 5(x). For convenience of the
at O° of the light polarizing directionP andA are the directions of following analysis the configuratiog(x) will be chosen in
the polarizer and the analyzer, respectively. such a way thatp(X) = eeg(X/\), Where ¢, is a constant
] ] ] characterizing the amplitude of the periodic structure and
the samplgcreates a distortion of the director at small mag-g(t), with t=x/\, the profile of 5(x). The scaling
netic fields. The director in the interior of the Sample is Sub'(t_>xl)\) |mp||es that the per|od|c|ty C@(X) will assume the
jected to a torque trying to rotate it. However, at the samgorm g(t+1)=g(t). With these replacements, after a
time, it experiences an elastic restoring torque due to thetraightforward calculation, Eq2) can be rewritten as
anchored surface layers. For an applied field below a critical ) )
strengthH., no distortion occurs. For fields larger than lebdK ™ N)\fldt 288 2 5.0)2
H., the distortion of the texture is observgr®], indicating 47772\ d o |2 K\ mn] o 9
that the magnetic coupling betwe@nandH is bigger than ) 4
the mechanical coupling betwearand the boundaries of the . 1 1—h?) o202+ h_ Po 4 5
microslide. To understand the observed periodicity we re- 2( )¢09 4 ggg ’ ®)
member that as the director has thesymmetry @ and ) )
—1i are equivalent in the very moment of the Fredericks WhereN (=a/\) is the number of periods af(x) along the
transition it has two choices: it bends clockwise or counterX direction and in ordzer to achieve a compactness in notation
clockwise. Therefore two disconnected portions of theWe have introducedy=8/3, h=H/H,, with H. being the
sample can bend in different directions, and this is theisual Fredericks thresholdy,Hg=K(/d)?, in the limit
mechanism producing the periodic walls that we see in thé@>b>d] for the strong anchoring ca$#2]. We also made
sample1]. A typical periodic distortiori8,13] is depicted in  SIT~¢"—(2/3!)6* in Eq. (2). Furthermore, the periodicity
Fig. 1. The wavelengthX) of the periodic distortion is then Of 9(t) allows us to express the integration in E§) along
directly measured as a function of the applied magnetic fieldUSt one period.

With this geometry we suppose that the components of the 10 0btain the periodic pattern configuration of the direc-
director can be expressed by tor, Eq.(5) can be extremized in terms of the functig(t)

and the parameterg, and A. From the Euler-Lagrange
1) equation forg, which gives the analytical form of the peri-
odic structure, we obtain

nxzcoﬁ(xayrz)! ny:SIne(Xiylz)! nZ:O,

where 6(x,y,2) is the angle between the directorand the K
x axis direction. The expression of the free energy density in (K_)
the two elastic constant approximatidl,(=Ks), taking into 2
account the magnetic field coupling[i%,3] This equation corresponds to the field equation for the

“N¢*” field theory. Then its solutions can be searched be-

d\? 2 2 2| $o ? 3
Py d;g+(h“=1)g—h b g°=0. (6

[ 5 P— 5 tween the usual kink solutions of the nonlinear theofles.
F= L{EK3[(‘9X‘9) +(9y0)"1+ 2K5(,0) The analysis reported in Rdf3] uses the kink solution of
Eq. (6), with only one wall. However the observed periodic-
— 2 x,H?sirt6}dv, (2) ity along thex direction suggests that we consider this struc-

ture as composed by a family of these walls. Meanwhile it is
whereK, K,, andK; are, respectively, the elastic constantsimportant to observe that the exact solution of a family of
of splay, twist, and bend. According to the experimental obkinks in the “\ ¢*’ theory is unknown[15]. Thus any ap-
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proach to this problem requires some kind of approximationthis approximation. Its explicit form is difficult to obtain, but
As an explicit and approximated form for the wall let us it may be responsible for the number of walls, and the dis-

consider the following ansatz: tance among them. It plays the role of a chemical potential.
In this sense we may assume that this term has the generic
(  [27 I form
sin l—t , O<t<Z
| 1 fw=DbdN\ vy, 9
t)=4¢ 1, -<t<z—- 7 .
9(t) 4 2 4 @ and will be added to Eq(5). Observe thab, d, N, andA
2ml1 1 1 1 have been defined above, amds a function characterizing
sin I_(E ” §_Z<t<§ the interaction between the walls to be determined below.
\

In spite of the fact that Eq6) can not be integrated for a
. . L solution corresponding to a sequence of many walls, global
g(z+te)=—0g(z—€), 0<e<3. properties of these solutions can be obtained from the con-

, . . . . . served quantities that follows from E¢g). In this way we
The profile of this structure is depicted in Fig. 2, from which (o051 that

it is not difficult to see that

1(Ks\[ d\? 1 1 2
I+2A=1. (8) C=3 Kf)(ﬁ) (0,9)%+ §(h2—1)92—1h2<%§> g%,

From this figure it is also easy to see that when the wall is (10
absent the director points along the direction given by the o
angle ¢,. As the angle— g, is also possible, the wall just follows from Eq._(6) asa c_onstant. This is an exact r_esult 'Fhat
links these two configurations, bending the director from oné@" Pe used with Eq(7) in order to obtain a relationship
configuration,e, for example, to the another ¢y[ 13]. The characterlzmg t'he pargmeters oft) A, | (o.r A) and .‘PO]'
portion of the interval (0,1) in whichy(t) is composed by Frqm Eq.(7) it is possible to deduce that in the points for
walls is just given byl, while 2A is the portion ofg(t) in which g(t)=0_(t=0, for examplg we havesg=(2a/l).
which the director remains pointing in thg, (or —¢g) di- Thus, Eq.(10) is reduced to
rection, which allows us to say that is a measure of the

2
distance between the walls. As we have scaled the length C= E(&) E) _12 (11)
of the periodicity to 1, the values df and A are, respec- 2\Ka/\ N
tively, the fraction of the period occupied by walls and the )
@0 (or —¢p) is the inclination of the director. Similarly, for the points wheregg(t)=1 we haved,g=0.

It is also easy to see that as we consideredAhgortion ~ Therefore,
of g(t) as a straight line, the free energy density of the in- )
teraction between these disclinations could not be taken into C= }(hz_ 1)— }hz(ﬂ) (12)
account. In order to give a complete description of the phe- 2
nomenon of periodic distortions, we need to add a term for
the interaction energy that we have neglected when we madérom Egs.(11) and(12) we obtain
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K\ [2d\? o s , (see Fig. 2 tends to destroy this alignment. Thus there is a
K_z)(T) =1 [(h —1—3h (0—0) ] (13 competition between these two “forces” leading the director
to oscillate betwee, and . In this way there is a com-
This equation indicates that (42 depends separately on Petition between the walls that tend to disturb the director
h2, ¢,, and also or2. This is the main motivation for the alignment and the aligned portion that tends to arrange the
scaling that sets apart the lengthof the periodic structure ~director in the same direction along the sample. This compe-
and the factorization of Ed5) in amplitudee, and the form ~ tition must reach a stable pattern for some valuaofrom
g(t). these considerations we may assume an elastic form for this
Let us now consider the extremization of Eg) in terms ~ force, whose “potential energy” is represented by
of ¢y. The variational procedure yields

Y=aA? (18
2 1 | 2
(@) :_8 _2[ (h2_1)( 1— _) — <§> (E) i] Observe that we have assumed that the parametires
Bo 8-5l h 2 Ko/A A ) 2l not depend on the magnetic field. In fact, we could not say

149 from beginning that it is true. Actually the real form of the

From Egs.(13) and(14) we obtain interaction between' the \(valls is yet unknown. We_ jgst as-
sume a stable configuration governed by an elastic interac-
K\ (2d)?2 4— 3| tion given by Eq.(18). Thereforea is just an elastic param-
(K_> T) :IZ(hZ—l)ﬁ. (15  eter that we have determined from the experimental data.
2 Our results indicate that it can be taken as a constant, as we
Note that if we have assumed, from the beginning, thafliSCUss in the next section. o
|=1 which means that all the periodic structures would be _ Substitution of Eqs(18) into (17), after considering Eq.
composed by walls, without a finite distantebetween them  (8): Yields
[see Eq.8)], this last equation would predict that a plot of 2,12 2,12 2 2_
: . . : - +51-8)+a(l- - =
(1/7)? vs h? would be just a straight line with(, /K 3) as an 1665(h" = D%+ 51 =8)+ a(1-Dh*(8-71)"=0, (19
angular coefficient. This result does not account for the engnich may be used to determiheWhen! is substituted in
tire behavior of the experimental curve. In fact, this curvegqs (15) and(14) we obtain (1X)2 and (p/6,)2. The pa-
presents a nonlinear behavior for values of the magnetic fielth metersy and (K»/K3) can be adjusted in order to fit the
far from the Fredericks threshold. Therefore, we can congyperimental points. The importance of these parameters is

clude that we must have# 1 (or A#0). __ obvious: a characterizes the interaction between adjacent
Similar procedure can be employed for the extremizationya)is - and K,/K3) is the ratio between the elastic con-
of Eq. (5) in terms of\, giving stants.

Ks|[2d)|? , ,
(E)(T) —I[(l—h y(2—1)+h

_ Let us now present the main results of our model and
27/} (16) calculations. Our aim was to use E35) in order to obtain

2

%o
0

5
1— §|) IIl. RESULTS AND DISCUSSION

‘Pg a good fit for the experimental points depicted in Fig. 3. To
obtain this fit we have solved Eq19) at fixed o for each
where we have used the interaction term HE) and Vvalue ofh. The result was substituted in E@.5) and a value

7= (4/K,)(d/7)2y. for the ratioK, /K3 was chosen to get a curve ford)>.
By using Eqs(15) and (16) we obtain This procedure was repeated until the best fit for the points
of Fig. 3 was found. Its corresponds to the values
4gg(h2_ 1)2(1—1)(1?+51—8)+yh?(8—71)%=0. a=1600, andK;/K,~2.2. This value for the ratio between

(17)  the bend and twist constants is in good agreement with a
recent experimental determinati¢h2]. Its is important to

This equation gives$ as a function oh?. However, to solve underline the advantage of a presentation of a graph of
the problem in a complete manner, we should find ajso (2d/\)? versush?. If the interaction between the walls is
i.e., we have to determine the interaction among the wallsneglected, this graph would be a straight liisee Eq.(15)
To obtain an approximated form for this interaction we re-and the text below Jt Therefore the curvature that can be
member that near the Fredericks threshdiéd¢1), the pe- observed in Fig. 3 reflects the interaction between the walls.
riodic structure tends to a sinusoidal behavior with very As a consequence of our procedure we have found the
small amplitudeg,. As the magnetic fielch is raised, an solution forl in Eq.(19). Thus it is possible to determine the
increasing number of nematic monodomains tends to béaction of A which is occupied by walls connecting the two
aligned with the magnetic field. This is equivalent to a grow-stables configurationg, and ,. The result is shown in
ing of the fraction ofg(t) having amplitude 1. Therefore, the Fig. 4. We observe that when the magnetic field tends to the
fraction of g(t) representing the distance between the wallsFredericks thresholdn?— 1) all the periodic structure rep-
[A in Eqg.(8)] increases with the magnetic field. On the otherresented byn(t) is occupied by walls, as expected. As the
hand, it is important to stress that the walls are just the obmagnetic field increasesdecreases and, hence, the fraction
jects whose presence in the nematic structure does not pernit for which the director points in the, (or -¢g) direction
a homogeneous alignment, that is, the portithof the wall ~ also increases with.
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FIG. 3. The behavior of (@/\)? as a function oh?. The points
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are the experimental data. The continuous line is the result of the

present calculations. The best fit was obtained der 1600 and

FIG. 5. Trend of the amplitudepy,/6,. We have used
a=1600, andK3/K,=2.2.

Our procedure also gives enough information to solve Eq. _ _
(14). The result is shown in Fig. 5. Note that when the fieldgated. To account for the experimental behavior of the sys-

tends to the Fredericks threshold?(-1), ¢o—0. On the
contrary, ¢ tends toé, for higher magnetic fields.

IV. CONCLUDING REMARKS

tem, a theoretical analysis in which this periodic structure is
considered as a sequence of domain walls was proposed. The
analysis is carried out by means of a variational procedure
developed in the frame of the elastic continuum theory. The
main purpose of the analysis was the investigation of the

In this paper the periodic structures formed by the actiordependence of the wavelength on the applied magnetic field.
of a magnetic field in a lyotropic nematic have been investi4we have shown that, in order to achieve a satisfactory de-
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FIG. 4. The trend of vs the reduced magnetic fiekd

scription for the behavior of the real system, the interaction
between the walls has to be taken into account in an explicit
way. Once the best fits for the curves are established, it is
easy to also obtain a good estimation for the ratio between
the elastic constants of bend and twist. This estimation is in
good agreement with independent measurements recently
performed. Furthermore, in the theoretical context that we
have analyzed the system, the strength of the interaction be-
tween the walls is also easily determined.

We stress again that we are dealing with a metastable
system whose relaxation time is very large. Then a complete
description of the system requires the development of a more
sophisticated analysis of the entire elastic problem. In this
analysis other relevant features of the system like viscosities
and more appropriated boundary conditions have to be taken
into account. Nevertheless, the phenomenological approach
we are proposing can be extended to treat another lyotropic
system. In this sense it can constitute a useful tool to inves-
tigate the elastic properties of these systems.
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