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A theoretical tool to determine the dependence of the wavelength of periodic structures on the applied
magnetic field in lyotropic liquid crystals in the nematic calamitic phase is proposed. It is assumed that the
periodic structure experimentally found can be represented by a sequence of walls. Our calculations indicate
that in order to describe the measured behavior of the system above the Fredericks threshold the interaction
between these walls must be taken into account. The strength of these interactions and the ratio between the
bend and twist elastic constants are also determined.@S1063-651X~96!04509-6#

PACS number~s!: 61.30.Gd, 61.30.Jf, 64.70.Md

I. INTRODUCTION

The distortion of the texture of nematic liquid crystals
~NLC! under the action of a magnetic or electric field is a
well known phenomena. It can be observed that under the
action of the magnetic field, two symmetrical distorted tex-
tures can be created, separated by a wall@1#. These walls in
thermotropic liquid crystals have been studied many years
ago both from the theoretical and experimental point of view
@2–7#. More recently, the situation in which a magnetic field
is applied to a previously oriented sample of lyotropic nem-
atic liquid crystals has been analyzed@8,9#. These NLC are
formed by mixtures of amphiphilic compounds and water, at
proper temperature and concentrations conditions@10#. In
general, the periodic distortions of the textures can be ob-
served in a polarizing microscope, with the polarizing direc-
tion parallel to the long axis of the micelle, the basic con-
stituent of lyotropics.

In recent papers the wavelength of the periodic distortion
(l) was utilized to determine the bend elastic constant
(K3) and the anisotropy of diamagnetic susceptibilityxa of
two different lyotropic systems@11#. In the frame of the elas-
tic theory a theoretical approach has been recently proposed
in order to estimate the anchoring strength, in the Rapini-
Papoular sense, for the situation of weak anchoring@12#. The
behavior of the distortion angle as a function of the magnetic
field has also been investigated, in the one constant approxi-
mation@13#. The periodic structures arising in these systems,
under the action of magnetic fields, correspond to metastable
states. In principle, the usual elastic approach, based on the
one constant approximation, cannot provide a completely
satisfactory description of the equilibrium state of this sys-
tem. This implies that a more complicated nonlinear analysis
is required in order to fully describe its behavior. However,
as can be experimentally observed, the relaxation time for
these periodic structures is very large. Only after a few hours
the instabilities collapse into closed elliptical loops@4#. This
fact can be responsible for the good agreement obtained be-
tween a simplified elastic approach and several experimental
results.

In this work we investigate the dependence of the wave-

length l of the periodic structure on the applied magnetic
field. Once a magnetic field is applied perpendicularly to the
direction of the director of the NLC sample, one observes the
arising of walls parallel to the magnetic field as soon as the
Fredericks threshold is reached@14#. The nature and physical
properties of the walls we are dealing with were studied by
Brochard in Ref.@3#, where the dependence on the magnetic
field of the length of just one wall was measured. Here we
use the fact that usually these walls appear as a periodic
array in the nematic structure, and study the length of this
periodicity when it appears along thex axis. The experimen-
tal data we are utilizing were obtained in regions of a mag-
netic field nearly equal and greater than the Fredericks
threshold@12#.

This paper is organized as follows. Section II is dedicated
to the presentation of the basic equations of the theoretical
approach. We also discuss the experimental procedure. In
Sec. III we present the main results of our calculation. In
Sec. IV some concluding remarks are drawn.

II. FUNDAMENTALS

The lyotropic sample consists of potassium laurate~KL !,
decanol~DeOH! and water, with the following concentra-
tions in weight percent: 29.4, 6.6, and 64, respectively. The
phase sequence, determined by optical and conoscopic
observations is as follows: isotropic~15 °C!—calamitic ne-
matic ~50 °C!—isotropic. Calamitic nematic (Nc) samples
were encapsuled at room temperature, in flat glass mi-
croslides from Vitro Dynamics with dimensionsa520 mm
~parallel to thex axis!, b52.5 mm ~parallel to they axis!,
and thicknessd50.2 mm~parallel to thez axis!. The method
of generating the periodic distortion of the director@8# con-
sists in orienting aNc sample in a planar geometry, with a
high magnetic field~10 kG along thex axis!. After a well-
oriented sample is achieved, the field is switched off and a
controlled magnetic field is applied along they axis. The
resulting competition between the magnetic susceptibility
~which tends to align the director along the field! and the
elastic energies~which tend to retain a uniform orientation of
the director consistent with the orientation at the surface of
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the sample! creates a distortion of the director at small mag-
netic fields. The director in the interior of the sample is sub-
jected to a torque trying to rotate it. However, at the same
time, it experiences an elastic restoring torque due to the
anchored surface layers. For an applied field below a critical
strengthHc , no distortion occurs. For fields larger than
Hc , the distortion of the texture is observed@12#, indicating
that the magnetic coupling betweennW andH is bigger than
the mechanical coupling betweennW and the boundaries of the
microslide. To understand the observed periodicity we re-
member that as the director has thep symmetry (nW and
2nW are equivalent!, in the very moment of the Fredericks
transition it has two choices: it bends clockwise or counter-
clockwise. Therefore two disconnected portions of the
sample can bend in different directions, and this is the
mechanism producing the periodic walls that we see in the
sample@1#. A typical periodic distortion@8,13# is depicted in
Fig. 1. The wavelength (l) of the periodic distortion is then
directly measured as a function of the applied magnetic field.
With this geometry we suppose that the components of the
director can be expressed by

nx5cosu~x,y,z!, ny5sinu~x,y,z!, nz50, ~1!

whereu(x,y,z) is the angle between the directorn and the
x axis direction. The expression of the free energy density in
the two elastic constant approximation (K15K3), taking into
account the magnetic field coupling is@1,3#

F5E
v
$ 1
2K3@~]xu!21~]yu!2#1 1

2K2~]zu!2

2 1
2xaH

2sin2u%dv, ~2!

whereK1 , K2 , andK3 are, respectively, the elastic constants
of splay, twist, and bend. According to the experimental ob-

servations, we are dealing with period structures along the
x axis, without structures along they andz axes. In this way
we assume, for future use in a variational approach, an ex-
plicit form for the functionu(x,y,z), that represents the spa-
tial configuration of the directornW . For simplicity strong an-
choring boundary conditions are assumed at the edges of the
sample, that is,

u~0,y,z!5u~a,y,z!5u~x,0,z!5u~x,b,z!5u~x,y,0!

5u~x,y,c!50. ~3!

Moreover, since the periodic structures are observed along
the x direction, we suppose trivial configurations satisfying
these boundary conditions alongy andz directions. Thus

u~x,y,z!5h~x!sinS py

b D sinS pz

d D , ~4!

for 0<x<a,0<y<b,0<z<d, whereh(x) is the configu-
ration of the nematic periodic structure along thex axis. For
instance, observe that sin(py/b), 0<y<b, and sin(pz/c),
0<z<d have half wavelength which corresponds to the
most simple structure along these directions. The periodicity
of h(x) implies thath(x1l)5h(x). For convenience of the
following analysis the configurationh(x) will be chosen in
such a way thath(x)5w0g(x/l), wherew0 is a constant
characterizing the amplitude of the periodic structure and
g(t), with t5x/l, the profile of h(x). The scaling
(t→x/l) implies that the periodicity ofg(x) will assume the
form g(t11)5g(t). With these replacements, after a
straightforward calculation, Eq.~2! can be rewritten as

F5
1

4
bdK2S p

d D 2NlE
0

1

dtH 12 K3

K2
S d

pl D 2w0
2~] tg!2

1
1

2
~12h2!w0

2g21
h2

4

w0
4

u0
2 g

4J , ~5!

whereN (5a/l) is the number of periods ofh(x) along the
x direction and in order to achieve a compactness in notation
we have introducedu0

258/3, h5H/Hc , with Hc being the
usual Fredericks threshold@xaHc

25K2(p/d)
2, in the limit

a@b@d# for the strong anchoring case@12#. We also made
sin2u'u22(2/3!)u4 in Eq. ~2!. Furthermore, the periodicity
of g(t) allows us to express the integration in Eq.~5! along
just one period.

To obtain the periodic pattern configuration of the direc-
tor, Eq. ~5! can be extremized in terms of the functiong(t)
and the parametersw0 and l. From the Euler-Lagrange
equation forg, which gives the analytical form of the peri-
odic structure, we obtain

SK3

K2
D S d

pl D 2] t2g1~h221!g2h2S w0

u0
D 2g350. ~6!

This equation corresponds to the field equation for the
‘‘ lw4’’ field theory. Then its solutions can be searched be-
tween the usual kink solutions of the nonlinear theories@15#.
The analysis reported in Ref.@3# uses the kink solution of
Eq. ~6!, with only one wall. However the observed periodic-
ity along thex direction suggests that we consider this struc-
ture as composed by a family of these walls. Meanwhile it is
important to observe that the exact solution of a family of
kinks in the ‘‘lw4’’ theory is unknown@15#. Thus any ap-

FIG. 1. Lyotropic nematic phase in microslides 200 mm thick
between crossed polarizers. Magnetic field~3.0 kG! along they axis
at 00 of the light polarizing direction.P andA are the directions of
the polarizer and the analyzer, respectively.
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proach to this problem requires some kind of approximation.
As an explicit and approximated form for the wall let us
consider the following ansatz:

g~ t !55
sinS 2p

l
t D , 0,t,

l

4

1,
l

4
,t,

1

2
2
l

4

sinF2p

l S 122t D G , 1

2
2
l

4
,t,

1

2

~7!

g~ 1
21e!52g~ 1

22e!, 0,e, 1
2 .

The profile of this structure is depicted in Fig. 2, from which
it is not difficult to see that

l12D51. ~8!

From this figure it is also easy to see that when the wall is
absent the director points along the direction given by the
anglew0 . As the angle2w0 is also possible, the wall just
links these two configurations, bending the director from one
configuration,w0 for example, to the another2w0@13#. The
portion of the interval (0,1) in whichg(t) is composed by
walls is just given byl , while 2D is the portion ofg(t) in
which the director remains pointing in thew0 ~or 2w0) di-
rection, which allows us to say thatD is a measure of the
distance between the walls. As we have scaled the lengthl
of the periodicity to 1, the values ofl and D are, respec-
tively, the fraction of the periodl occupied by walls and the
w0 ~or 2w0) is the inclination of the director.

It is also easy to see that as we considered thisD portion
of g(t) as a straight line, the free energy density of the in-
teraction between these disclinations could not be taken into
account. In order to give a complete description of the phe-
nomenon of periodic distortions, we need to add a term for
the interaction energy that we have neglected when we made

this approximation. Its explicit form is difficult to obtain, but
it may be responsible for the number of walls, and the dis-
tance among them. It plays the role of a chemical potential.

In this sense we may assume that this term has the generic
form

fW5bdNlg, ~9!

and will be added to Eq.~5!. Observe thatb, d, N, andl
have been defined above, andg is a function characterizing
the interaction between the walls to be determined below.

In spite of the fact that Eq.~6! can not be integrated for a
solution corresponding to a sequence of many walls, global
properties of these solutions can be obtained from the con-
served quantities that follows from Eq.~6!. In this way we
recall that

C5
1

2 SK3

K2
D S d

pl D 2~] tg!21
1

2
~h221!g22

1

4
h2S w0

u0
D 2g4,

~10!

follows from Eq.~6! as a constant. This is an exact result that
can be used with Eq.~7! in order to obtain a relationship
characterizing the parameters ofh(t) @l, l (or D) andw0#.
From Eq.~7! it is possible to deduce that in the points for
which g(t)50 (t50, for example! we have] tg5(2p/ l ).
Thus, Eq.~10! is reduced to

C5
1

2 SK3

K2
D S 2dl D 2 1l 2 . ~11!

Similarly, for the points whereg(t)51 we have] tg50.
Therefore,

C5
1

2
~h221!2

1

4
h2S w0

u0
D 2. ~12!

From Eqs.~11! and ~12! we obtain

FIG. 2. Graphic representation ofg(t). The
distanceD is explicitly shown between two con-
secutive walls, and the portionl where there is
bending between the two stable situations. We
havel12D51.
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SK3

K2
D S 2dl D 25 l 2H ~h221!2

1

2
h2S w0

u0
D 2J . ~13!

This equation indicates that (1/l)2 depends separately on
h2, w0, and also onl 2. This is the main motivation for the
scaling that sets apart the lengthl of the periodic structure
and the factorization of Eq.~5! in amplitudew0 and the form
g(t).

Let us now consider the extremization of Eq.~5! in terms
of w0 . The variational procedure yields

S w0

u0
D 25 8

825l

1

h2 H ~h221!S 12
l

2D2SK3

K2
D S 2dl D 2 12l J .

~14!

From Eqs.~13! and ~14! we obtain

SK3

K2
D S 2dl D 25 l 2~h221!

423l

827l
. ~15!

Note that if we have assumed, from the beginning, that
l51 which means that all the periodic structures would be
composed by walls, without a finite distanceD between them
@see Eq.~8!#, this last equation would predict that a plot of
(1/l)2 vsh2 would be just a straight line with (K2 /K3) as an
angular coefficient. This result does not account for the en-
tire behavior of the experimental curve. In fact, this curve
presents a nonlinear behavior for values of the magnetic field
far from the Fredericks threshold. Therefore, we can con-
clude that we must havelÞ1 ~or DÞ0).

Similar procedure can be employed for the extremization
of Eq. ~5! in terms ofl, giving

S K3

K2
D S 2dl D 25 l H ~12h2!~22 l !1h2S w0

u0
D 2S 12

5

8
l D

1
2g̃

w0
2 J , ~16!

where we have used the interaction term Eq.~9! and
g̃5(4/K2)(d/p)

2g.
By using Eqs.~15! and ~16! we obtain

4u0
2~h221!2~12 l !~ l 215l28!1 g̃h2~827l !250.

~17!

This equation givesl as a function ofh2. However, to solve
the problem in a complete manner, we should find alsog̃ ,
i.e., we have to determine the interaction among the walls.
To obtain an approximated form for this interaction we re-
member that near the Fredericks threshold (h2→1), the pe-
riodic structure tends to a sinusoidal behavior with very
small amplitudew0 . As the magnetic fieldh is raised, an
increasing number of nematic monodomains tends to be
aligned with the magnetic field. This is equivalent to a grow-
ing of the fraction ofg(t) having amplitude 1. Therefore, the
fraction of g(t) representing the distance between the walls
@D in Eq. ~8!# increases with the magnetic field. On the other
hand, it is important to stress that the walls are just the ob-
jects whose presence in the nematic structure does not permit
a homogeneous alignment, that is, the portionl /2 of the wall

~see Fig. 2! tends to destroy this alignment. Thus there is a
competition between these two ‘‘forces’’ leading the director
to oscillate betweenw0 and -w0 . In this way there is a com-
petition between the walls that tend to disturb the director
alignment and the aligned portion that tends to arrange the
director in the same direction along the sample. This compe-
tition must reach a stable pattern for some value ofD. From
these considerations we may assume an elastic form for this
force, whose ‘‘potential energy’’ is represented by

g̃5aD2. ~18!

Observe that we have assumed that the parametera does
not depend on the magnetic field. In fact, we could not say
from beginning that it is true. Actually the real form of the
interaction between the walls is yet unknown. We just as-
sume a stable configuration governed by an elastic interac-
tion given by Eq.~18!. Thereforea is just an elastic param-
eter that we have determined from the experimental data.
Our results indicate that it can be taken as a constant, as we
discuss in the next section.

Substitution of Eqs.~18! into ~17!, after considering Eq.
~8!, yields

16u0
2~h221!2~ l 215l28!1a~12 l !h2~827l !250, ~19!

which may be used to determinel . When l is substituted in
Eqs.~15! and ~14! we obtain (1/l)2 and (w0 /u0)

2. The pa-
rametersa and (K2 /K3) can be adjusted in order to fit the
experimental points. The importance of these parameters is
obvious: a characterizes the interaction between adjacent
walls, and (K2 /K3) is the ratio between the elastic con-
stants.

III. RESULTS AND DISCUSSION

Let us now present the main results of our model and
calculations. Our aim was to use Eq.~15! in order to obtain
a good fit for the experimental points depicted in Fig. 3. To
obtain this fit we have solved Eq.~19! at fixeda for each
value ofh. The result was substituted in Eq.~15! and a value
for the ratioK2 /K3 was chosen to get a curve for (2d/l)2.
This procedure was repeated until the best fit for the points
of Fig. 3 was found. Its corresponds to the values
a51600, andK3 /K2'2.2. This value for the ratio between
the bend and twist constants is in good agreement with a
recent experimental determination@12#. Its is important to
underline the advantage of a presentation of a graph of
(2d/l)2 versush2. If the interaction between the walls is
neglected, this graph would be a straight line@see Eq.~15!
and the text below it#. Therefore the curvature that can be
observed in Fig. 3 reflects the interaction between the walls.

As a consequence of our procedure we have found the
solution forl in Eq. ~19!. Thus it is possible to determine the
fraction ofl which is occupied by walls connecting the two
stables configurationsw0 and -w0 . The result is shown in
Fig. 4. We observe that when the magnetic field tends to the
Fredericks threshold (h2→1) all the periodic structure rep-
resented byh(t) is occupied by walls, as expected. As the
magnetic field increases,l decreases and, hence, the fraction
D for which the director points in thew0 ~or -w0) direction
also increases withh.
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Our procedure also gives enough information to solve Eq.
~14!. The result is shown in Fig. 5. Note that when the field
tends to the Fredericks threshold (h2→1), w0→0. On the
contrary,w0 tends tou0 for higher magnetic fields.

IV. CONCLUDING REMARKS

In this paper the periodic structures formed by the action
of a magnetic field in a lyotropic nematic have been investi-

gated. To account for the experimental behavior of the sys-
tem, a theoretical analysis in which this periodic structure is
considered as a sequence of domain walls was proposed. The
analysis is carried out by means of a variational procedure
developed in the frame of the elastic continuum theory. The
main purpose of the analysis was the investigation of the
dependence of the wavelength on the applied magnetic field.
We have shown that, in order to achieve a satisfactory de-
scription for the behavior of the real system, the interaction
between the walls has to be taken into account in an explicit
way. Once the best fits for the curves are established, it is
easy to also obtain a good estimation for the ratio between
the elastic constants of bend and twist. This estimation is in
good agreement with independent measurements recently
performed. Furthermore, in the theoretical context that we
have analyzed the system, the strength of the interaction be-
tween the walls is also easily determined.

We stress again that we are dealing with a metastable
system whose relaxation time is very large. Then a complete
description of the system requires the development of a more
sophisticated analysis of the entire elastic problem. In this
analysis other relevant features of the system like viscosities
and more appropriated boundary conditions have to be taken
into account. Nevertheless, the phenomenological approach
we are proposing can be extended to treat another lyotropic
system. In this sense it can constitute a useful tool to inves-
tigate the elastic properties of these systems.
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FIG. 3. The behavior of (2d/l)2 as a function ofh2. The points
are the experimental data. The continuous line is the result of the
present calculations. The best fit was obtained fora51600 and
(K3 /K2)52.2.

FIG. 4. The trend ofl vs the reduced magnetic fieldh.

FIG. 5. Trend of the amplitudew0 /u0 . We have used
a51600, andK3 /K252.2.
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